
Extensibility Reference Guide 
  Oracle Banking Payments                                          

Release 14.5.4.0.0                                                          

[April 2022] 

roaugust
Cross-Out



Contents 

1 Preface ................................................................................................................................................................. 3 
1.1 Audience ......................................................................................................................................................... 3 
1.2 Conventions ..................................................................................................................................................... 3 

2 Introduction ....................................................................................................................................................... 3 
2.1 How to use this Guide ..................................................................................................................................... 4 

3 Extensibility Approach ..................................................................................................................................... 5 
3.1 Features ........................................................................................................................................................... 5 
3.2 Layers .............................................................................................................................................................. 5 
3.3 Release hierarchies .......................................................................................................................................... 5 

4 Extensible units.................................................................................................................................................. 7 
4.1 Application Server Layer ................................................................................................................................ 7 

4.1.1 Language xml......................................................................................................................................... 7 
4.1.2 SYS Java Script File ............................................................................................................................... 7 
4.1.3 Kernel JavaScript File ........................................................................................................................... 8 
4.1.4 Cluster JavaScript File .......................................................................................................................... 8 
4.1.5 Custom JavaScript File .......................................................................................................................... 8 

4.2 Database layer – Maintenance ......................................................................................................................... 8 
4.2.1 Function ID Main Package .................................................................................................................... 9 
4.2.2 Hook Packages ...................................................................................................................................... 9 
4.2.3 Kernel Package .................................................................................................................................... 11 
4.2.4 Cluster Package ................................................................................................................................... 11 
4.2.5 Custom Package .................................................................................................................................. 11 

4.3 Database layer – Bypassing base functionality ............................................................................................. 11 



Oracle Banking Payments Extensibility Reference Guide 3 

1 Preface 
This document describes the approach to Oracle Banking Payments extensibility and 
acts as reference for a various handlers provided for extensibility.   

1.1 Audience 
This document is intended for Oracle Banking Payments application 
Developers/Users who are authorized to perform the following tasks: 

 Modify the layouts of existing Oracle Banking Payments Screens
 Modify the existing functionality by adding new fields/tabs/data blocks
 Extend the existing screen to have fields based on customer specific table/fields
 Add customer specific validations at extension hooks
 Add customer specific processing logics in batch processing
 Add customer specific notifications
 Add customer specific calculation elements
 Add customer specific reports

1.2 Conventions 

The following text conventions are used in this document: 

Convention Meaning 

boldface Boldface type indicates graphical user interface elements (for example, 
menus and menu items, buttons, tabs, dialog controls), including 
options that you select. 

italic italic type indicates book titles, emphasis, or placeholder variables for 
which you supply particular values. 

monospace  Monospace type indicates language and syntax elements, directory and 
file names, URLs, text that appears on the screen, or text that you enter. 

2 Introduction 
Oracle Banking Payments base product development is performed by Kernel team and 
the units that are developed are called as Kernel software units. Other teams that requires 
the product extensions are required to use the “extension units” applicable for respective 
teams. 

Product extension required for the following teams: 
• Cluster release teams
• Customer release teams
• Partners/Customers



Oracle Banking Payments Extensibility Reference Guide 4 

2.1 How to use this Guide 

This document contains the below chapters describing the approach of extensibility in 
different areas of the system. 

• Chapter 3, “Extensibility Approach”
• Chapter 4, “Extensible Units”



Oracle Banking Payments Extensibility Reference Guide  5 
 

 

 

3 Extensibility Approach 
This section describes the various extensibility features, layers that impact the extensibility 
and release hierarchies involved.  

3.1 Features 
 

Oracle Banking Payments provides following additional handlers in the system: 
• Contract Operation data base units 

These units are used to extend the Oracle Banking Payments module 
specific contract online operations. 

• Maintenance of User Defined Fields at screen level  
UDF feature is used to define the additional fields required for extensibility to 
capture extra data 

3.2 Layers 
Oracle Banking Payments provides handlers at the following layers to extensibility 
teams to extend the business logic: 

• Screen extensibility 
Screen extensibility is provided to add data blocks, fields and other graphical 
elements buttons, LOVs to the screens. Extensibility design also helps upgrade 
of the extended logic in further release of Banking UBS. 

• Screen – Java script extensibility: 
Java script files extensibility provides ‘Pre’ and ‘Post’ handlers to add the code 
at logical stages in front end processing. 

• Back End Units:  
Database extensibility provides ‘Pre’ and ‘Post’ handlers to add code at logical 
stage in back end processing 

 

3.3 Release hierarchies 
To enable extensibility, Oracle Banking Payments identifies the release type both 
during design and in runtime thereby restricting the development teams to add business 
logic in designated units only. This is to ensure the development teams of different release 
types use corresponding units to add business logic. 
 
Below are the release types Oracle Banking Payments identifies and supports in 

extensible mode: 
• Kernel: Oracle Banking Payments base product release 
• Cluster:  Customized base for a specific region or a specific functionality 



Oracle Banking Payments Extensibility Reference Guide  6 
 

• Custom: Customized release for customers 
 
Kernel is the main product release and Cluster releases are made using Kernel as the base 
to develop Cluster specific functionality. This Cluster release can be further enhanced 
based on the customer specific requirements to develop a Custom release.  
 
In such case, hierarchy of Release types would be as below: 

Kernel   Cluster   Custom 
 
In some cases where the final set of requirements are not very different from Kernel 
release or if there are not many common requirements across the customers of a particular 
region, Kernel itself will be taken as  base for Custom releases.   
 
In such case, hierarchy of Release types would be as below: 

Kernel   Custom 
 
In all these cases, it is required for the Kernel release to provide place holders for adding 
additional business logic both in Cluster and Custom releases. 
 
Oracle Banking will be enhanced to support extensibility in the below areas: 

• Screen Design 
• Front End Scripting 
• Code Generator  
• Back End PL/SQL Programming  

The approach is to divide the programs (Java Script and PL/SQL Packages) into several 
logical stages and to provide ‘Pre’ and ‘Post’ handlers to Customization teams. 



Oracle Banking Payments Extensibility Reference Guide  7 
 

 
 

4 Extensible units 
 

There are basically the following four types of screens in Oracle Banking Payments: 
• Maintenance: These screens are typically used to maintain static data used 

across the system. These screens include product definition function as well. 
• Reports: These screens are used to capture data required to generate a BI 

Publisher canned reports. 
 

4.1 Application Server Layer 
As a part of RAD function ID generation, following units are generated for application 
layer: 

• RAD XML 
• Language / UI XML 
• Java Script files 

o SYS JS files 
o Kernel JS files 
o Cluster JS files 
o Custom JS files 

4.1.1 Language xml 
Language XML file, also called as UIXML is generated by RAD tool during function ID 
(screen) development. This file is contains following elements: 

• Screens 
• Sections and Partitions 
• Blocks 
• Field sets 
• Fields  and their properties 

During run time, XSL Transformation is applied to this XML file by linking it to an XSL 
file. This results in screen rendering at the browser. 

4.1.2 SYS Java Script File 
As a part of Function ID development, RAD tool generates the SYS Java script files. These 
SYS JavaScript file mainly contains a list of pre declared variables: 

• msgxml: - This variable is used by the system to build FCUBS Request XML 
• dataSrcLocationArray: - This variable is an array of DATA BLOCKS 
• relationArray:-This array contains relation and relation type details of  blocks.  
• Databinding 



Oracle Banking Payments Extensibility Reference Guide 8 

• retflds and bndFlds:- These arrays contains LOV  information
• CallFormArray, CallFormRelat, CallRelatType:- These arrays contains callform

details, call form relation and relation type
• actionsAmmendArray: - This array contains information for enabling fields

based on actions

4.1.3 Kernel JavaScript File 
As a part of Function ID development, RAD tool generates the Kernel Java script files. 
These Javascript file allows developer to add functional code and is specific to KERNEL 
release. The functions in this file are generally triggered by screen events. A developer 
working in kernel release would add functions based on two categories: 

• Functions triggered by screen loading events
Eg:  fnPreLoad_KERNEL(),fnPostLoad_KERNEL()

• Functions triggered by screen action events
Eg: fnPreNew_ KERNEL (),fnPostNew_ KERNEL ()

4.1.4 Cluster JavaScript File 
As a part of Function ID development, RAD tool generates the Cluster Java script files. 
These Javascript file allows developer to add functional code and is specific to CLUSTER 
release. The functions in this file are generally triggered by screen events. A developer 
working in CLUSTER release would add functions based on two categories: 

• Functions triggered by screen loading events
Eg:  fnPreLoad_CLUSTER(),fnPostLoad_CLUSTER()

• Functions triggered by screen action events
Eg: fnPreNew_ CLUSTER (),fnPostNew_ CLUSTER ()

In case if any function in KERNEL javascript file has to be modified,this can be achieved 
by overriding the function in CLUSTER javascript file. 

4.1.5 Custom JavaScript File 
As a part of Function ID development, RAD tool generates the Custom Java script files. 
These java script file allows developer to add functional code and is specific to CUSTOM 
release. The functions in this file are generally triggered by screen events. A developer 
working in CUSTOM release would add functions based on two categories: 

• Functions triggered by screen loading events
Eg:  fnPreLoad_CUSTOM(),fnPostLoad_CUSTOM()

• Functions triggered by screen action events
Eg: fnPreNew_ CUSTOM (),fnPostNew_ CUSTOM ()

In case if any function either in KERNEL javascript file or CLUSTER javascript file has to 
be modified,this can be achieved by overriding the respective function in CUSTOM  
javascript file 

4.2 Database layer – Maintenance 



Oracle Banking Payments Extensibility Reference Guide  9 
 

As a part of function ID development, RAD generates following database packages: 
• Function ID MAIN Package 
• Hook Packages 

o KERNEL Package 
o CLUSTER Package 
o CUSTOM Package 

4.2.1 Function ID Main Package 
The Main Package contains the basic validations and backend logic for the Maintenance 
function id. The Main package contains the mandatory checks required. It will also 
contain function calls to the other packages generated by RAD. 
 
The main package has the below stages: 

• Converting Ts to PL/SQL Composite Type 
• Checking for mandatory fields 
• Defaulting and validating the data 
• Writing into Database 
• Querying the Data from database 
• Converting the Modified Composite Type again to TS 

Each of these stages has a ‘Pre’ and ‘Post’ hooks in the Kernel, Cluster and Custom 
Packages. These Hooks are called from the Main Package itself. Main Package has the 
system-generated code and should not be modified by the developer Kernel, Cluster and 
Custom Packages are the packages where the respective team can add business logic in 
appropriate functions using the Pre and Post hooks available. 

4.2.2 Hook Packages 
The Main Package has designated calls to these Hook Packages for executing any 
functional checks and Business validations added by the user. The structure for all the 
Hook Packages are the same, like: 

• Fn_Post_Build_Type_Structure 
• Fn_Pre_Check_Mandatory  
• Fn_Post_Check_Mandatory  
• Fn_Pre_Default_and_Validate  
• Fn_Post_Default_and_Validate  
• Fn_Pre_Upload_Db  
• Fn_Post_Upload_Db 
• Fn_Pre_Query 
• Fn_Post_Query 

These Functions are called from the Main package using the Pre and Post Hooks available 
in the Main Package. The 3 Hook Packages namely Kernel, Cluster and Custom Packages 
have similar structure and are for the respective teams to work on. 



Oracle Banking Payments Extensibility Reference Guide 10 

In the Table SMTB_PARAMETERS, the parameter RELEASE_TYPE indicates the 
deployed release. The system uses this flag to determine the hooks to be called. 
Depending on the deployed release type system skips calling these hooks.  

For examples if the deployed release is Kernel, Cluster and Custom hooks need not be 
called. Similarly in case the deployed release type is Cluster, system does not call custom 
hook as it is not needed. 

The Complete Flow for a sample function, say Fn_Check_Mandatory is as follows: 

• STPKS_STDCIFCR_MAIN. Fn_Check_Mandatory

• STPKS_STDCIFCR_CUSTOM.Fn_Pre_Check_Mandatory

• STPKS_STDCIFCR_CLUSTER.Fn_Pre_Check_Mandatory

• STPKS_STDCIFCR_KERNEL.Fn_Pre_Check_Mandatory

• STPKS_STDCIFCR_MAIN .Fn_Sys_Check_Mandatory

• STPKS_STDCIFCR_KERNEL.Fn_Post_Check_Mandatory

• STPKS_STDCIFCR_CLUSTER.Fn_ Post_Check_Mandatory

• STPKS_STDCIFCR_CUSTOM.Fn_ Post_Check_Mandatory

There are auto generated functions like FN_SKIP_<RELEAE_TYPE> which would 
determine whether or not a particular hooks needs to be called.  

Developer also has an option to bypass the base release hook if need be. For example if 
the validations written in STPKS_STDCIFCR_Kernel.FN_PRE_CHECK_MANDATORY 
are not required or not suitable for the Cluster release, system provides an option to 
bypass the code written by Kernel team.  

Similarly a Custom release can also bypass the code written by Kernel and Custom 
Releases. This can be achieved by calling procedures PR_SET_SKIP_<RELEASE_TYPE> 
and PR_SET_ACTIVATE_<RELEASETYPE>. These procedures will be made available in 
the main package and the development teams of Customization teams can use these 
procedures to skip and re-activate the hooks of parent release. 



Oracle Banking Payments Extensibility Reference Guide  11 
 

The Developer should avoid adding validations or Checks in the Pre Stage of any 
function, like Fn_Pre_Check_Mandatory, etc and should aim to add all the validations in 
the Fn_Post_Default_and_Validate. 

 

4.2.3 Kernel Package 
The Kernel package is solely for the Kernel Team to modify. The Main package has 
designated calls to the Kernel package for executing any functional checks or validations 
included in the Kernel Package.  All the user level validations and conditional operations 
should be included in Fn_Post_Default_and_Validate. This function is called from the 
Main Package after the execution of Fn_Default_and_Validate. User should avoid putting 
validations or code in any other function. 

 
In case user needs to add a separate function, the existing RAD generated structure 
should not be changed. Instead the user can create a new package e.g. 
STPKS_STDCIFCR_UTILS package. The desired function can be included in this package 
and the call can be made from the Kernel Package. 

4.2.4 Cluster Package 
The Cluster package is available to the Cluster Team to add any validations or Checks 
specific to the Cluster Team over and above the Kernel Team. The Kernel Team or the 
Custom Team should not modify the contents of this package. 

4.2.5 Custom Package 
The Custom package is available to the Custom Team only to add any validations or 
Checks over and above those already present in the Kernel and Cluster Packages. 

 

4.3 Database layer – Bypassing base functionality 
In cases where the functionality of child release, either cluster or custom like to override 
base functionality, there might be a need to skip the base functionality.  RAD Generated 
code provides handlers to this as well and the kernel functionality can be skipped from 
Cluster and kernel/cluster can be skipped from custom releases. 

 
For Example, let us say that the business logic in the function 
STPKS_STDCIFCR_KERNEL.Fn_Pre_Default_and_Validate is contradicting the business 
logic for Cluster, then the user has the option to skip the validation present in the Kernel. 
For this the user needs to call PR_SET_SKIP_KERNEL. After it bypasses, the user again 
needs to activate this flag by calling PR_SET_ACTIVATE_KERNEL. Else all the following 
functions in KERNEL will be bypassed.  

 
Once the Skip is set in cluster and again activated, it skips both the functions in kernel 
namely, STPKS_STDCIFCR_KERNEL.Fn_Pre_Default_and_Validate and 
STPKS_STDCIFCR_KERNEL.Fn_Post_Default_and_Validate. If the requirement is that 
only the validations and logic in 
STPKS_STDCIFCR_KERNEL.Fn_Pre_Default_and_Validate be skipped then the other 



Oracle Banking Payments Extensibility Reference Guide 12 

function STPKS_STDCIFCR_KERNEL.Fn_Post_Default_and_Validate needs to be called 
explicitly from the Cluster Package. 

Similarly from Custom Package the validations in Kernel as well as Cluster can be 
bypassed. 



Oracle Banking Payments Extensibility Reference Guide 13 

Oracle Banking Payments Extensibility Reference  Guide 
[April 2022] 
Version 14.5.4.0.0 

Oracle Financial Services Software Limited 
Oracle Park 
Off Western Express Highway 
Goregaon (East) 
Mumbai, Maharashtra 400 063 
India 

Worldwide Inquiries: 
Phone: +91 22 6718 3000 
Fax:+91 22 6718 3001 
www.oracle.com/financialservices/ 

Copyright ©  2017, 2022, Oracle and/or its affiliates. All rights reserved. 

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their 
respective owners. 

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs 
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer 
software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As 
such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, 
integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and 
license restrictions applicable to the programs. No other rights are granted to the U.S. Government. 

This software or hardware is developed for general use in a variety of information management applications. It is not 
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of 
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all 
appropriate failsafe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates 
disclaim any liability for any damages caused by use of this software or hardware in dangerous applications. 

This software and related documentation are provided under a license agreement containing restrictions on use and 
disclosure and are protected by intellectual property laws. Except as exp ressly permitted in your license agreement or 
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, 
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of 
this software, unless required by law for interoperability, is prohibited. 

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any 
errors, please report them to us in writing.  

This software or hardware and documentation may provide access to or information on content, products and services 
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any 
kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be 
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or 
services. 

http://www.oracle.com/financialservices/

	1 Preface
	1.1 Audience
	1.2 Conventions

	2 Introduction
	2.1 How to use this Guide

	3 Extensibility Approach
	3.1 Features
	3.2 Layers
	3.3 Release hierarchies

	4 Extensible units
	4.1 Application Server Layer
	4.1.1 Language xml
	4.1.2 SYS Java Script File
	4.1.3 Kernel JavaScript File
	4.1.4 Cluster JavaScript File
	4.1.5 Custom JavaScript File

	4.2 Database layer – Maintenance
	4.2.1 Function ID Main Package
	4.2.2 Hook Packages
	4.2.3 Kernel Package
	4.2.4 Cluster Package
	4.2.5 Custom Package

	4.3 Database layer – Bypassing base functionality


